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Abstract: A key question in designing MRI-based clinical trials is how the main magnetic field strength
of the scanner affects the power to detect disease effects. In 110 subjects scanned longitudinally at both
3.0 and 1.5 T, including 24 patients with Alzheimer’s Disease (AD) [74.8 � 9.2 years, MMSE: 22.6 � 2.0
at baseline], 51 individuals with mild cognitive impairment (MCI) [74.1 � 8.0 years, MMSE: 26.6 �
2.0], and 35 controls [75.9 � 4.6 years, MMSE: 29.3 � 0.8], we assessed whether higher-field MR
imaging offers higher or lower power to detect longitudinal changes in the brain, using tensor-based
morphometry (TBM) to reveal the location of progressive atrophy. As expected, at both field strengths,
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progressive atrophy was widespread in AD and more spatially restricted in MCI. Power analysis
revealed that, to detect a 25% slowing of atrophy (with 80% power), 37 AD and 108 MCI subjects
would be needed at 1.5 T versus 49 AD and 166 MCI subjects at 3 T; however, the increased power at
1.5 T was not statistically significant (a ¼ 0.05) either for TBM, or for SIENA, a related method for
computing volume loss rates. Analysis of cumulative distribution functions and false discovery rates
showed that, at both field strengths, temporal lobe atrophy rates were correlated with interval decline
in Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog), mini-mental status exam
(MMSE), and Clinical Dementia Rating sum-of-boxes (CDR-SB) scores. Overall, 1.5 and 3 T scans did
not significantly differ in their power to detect neurodegenerative changes over a year. Hum Brain
Mapp 00:000–000, 2009. VC 2009 Wiley-Liss, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia, affecting more than 26 million people world-
wide [Wimo et al., 2006]. With the aging population living
longer than ever before, AD is now a major public health
concern with the number of affected patients expected to
triple to reach 13.4 million, by the year 2050, in the United
States alone [Mueller et al., 2005b]. Early signs of AD
include loss of short-term memory functioning followed
by a progressive decline in other cognitive domains
including language, attention, orientation, visuospatial
skills, and executive function, as well as emotional and
behavioral disturbances. Several current therapeutic trials
aim to delay disease progression by targeting patients
with amnestic mild cognitive impairment (MCI), an inter-
mediate risk state with a 5-fold increased annual conver-
sion rate to AD compared to healthy population [Petersen,
2000; Petersen et al., 1994, 2001; Petersen and Negash,
2008].

Magnetic resonance imaging (MRI) is now widely used
to detect changes in brain volume over time [Fox et al.,
2000; Jack et al., 2003, 2008; Scheltens et al., 2002; Thomp-
son et al., 2003]. As new treatments are developed to slow
or delay disease progression, there is an urgent need to
assess and compare the power of imaging methods for
tracking and predicting disease progression, and discover-
ing statistical effects of factors that may delay or accelerate
disease onset (e.g., treatment, genotype, education, diet,
and cardiovascular health). The Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), a collaborative project funded
by the National Institute of Aging and the pharmaceutical
industry, includes a major effort to optimize technical
standards for image acquisition and analysis [Jack et al.,
2008].

The U.S. Food and Drug Administration began approv-
ing 3 T brain MRI for clinical use in the late 1990s, pre-
senting a new opportunity for imaging disease
progression in the brain [Frayne et al., 2003]. Theoreti-
cally, increasing the magnetic field strength from stand-

ard 1.5 to 3 T roughly doubles the signal-to-noise ratio
(SNR), and provides higher contrast to noise, per unit
scan time, to better differentiate gray/white matter and
other tissues. Even so, 3 T MR images often have an
increased level of artifact compared to their 1.5 T coun-
terparts [Bernstein et al., 2006]. For example, inhomoge-
neity in the RF transmit field can lead to an increased
central brightening artifact at 3 T [Collins et al., 2005].
These artifacts can affect the accuracy of automated algo-
rithms that classify tissue into gray and white matter
components [Sled et al., 1998]. Also, as the field strength
increases, the magnetic field inhomogeneity due to spa-
tial variations in susceptibility increases [Schenck, 1996].
This can lead to local spatial distortion as well as artifac-
tual local variations in image intensity. Consequently at 3
T, geometric distortions and signal drop-off can occur
due to sharp changes in magnetic susceptibility at tis-
sue/air interfaces, especially at the frontal and temporal
poles [Frayne et al., 2003; Jack et al., 2008]; these effects
are more problematic than at 1.5 T. Even so, higher-field
imaging offers higher SNR for many other MRI-based
acquisitions, such as blood-oxygenation level dependent
(BOLD) contrast in functional MRI, diffusion tensor
imaging, and MR spectroscopy. 3 T scanners now repre-
sent roughly 10% of the U.S. scanner market but they
require the development of radio frequency antennas to
accommodate the higher resonant frequency and other
technical modifications that can handle increased chemi-
cal shift (as measured in Hz), a higher deposition of ra-
dio-frequency (RF) energy into the patient’s tissue,
increased acoustic noise, and greater need for safety pre-
cautions regarding implanted metallic devices [Bernstein
et al., 2006; Frayne et al., 2003].

Few studies have directly compared 3 T and 1.5 T scan-
ning for morphometric analyses, perhaps because this
would require a relatively large cohort of subjects to be
scanned at both field strengths. To help evaluate whether
higher-field MRI is better for detecting structural brain
changes in patients with AD, we conducted a study, as
part of the ADNI, in which 25% of all subjects were

r Ho et al. r

r 2 r



scanned at both 1.5 and 3 T at selected sites, using opti-
mized MRI sequences at each respective field.

We analyzed 110 subjects scanned at both field strengths
using tensor-based morphometry (TBM), a relatively new
image analysis technique that identifies brain changes over
time, based on the gradients of the deformation fields that
align successive brain scans [Ashburner and Friston, 2003;
Fox et al., 2001; Hua et al., 2008a,b; Leow et al., 2009; Stud-
holme et al., 2001; Thompson et al., 2000]. We examined
longitudinal brain changes, comparing maps of atrophic
rates in groups of AD and MCI subjects relative to controls
scanned at 1.5 and 3 T. To determine which field strength
best detected progressive brain atrophy, we computed
how many subjects would be needed to detect a 25%
reduction in the mean annual rate of brain loss, a statistic
that has been advocated as a measure of statistical power
for clinical trials [Jack et al., 2008]. To boost power for
sample size estimation, we used a technique recently
advocated by Reiman and Chen [Hua et al., 2009; Reiman
et al., 2008; Reiman and Langbaum, 2009], in which
atrophic rates are summarized in a statistically predefined
subregion of an anatomical ROI (such as the temporal
lobe) showing the most active atrophy in an independent
sample of AD subjects. Small sample sizes to detect active
disease are a necessary but not sufficient condition for a
valuable neuroimaging biomarker; it is also vital that the
changes correlate with (or predict) cognitive decline,
which we have previously found to be correlated with the
atrophic rates in TBM [Leow et al., 2009]. We therefore
also used cumulative distribution function (CDF) plots
and false discovery rate (FDR) methods to compare the
power of 1.5 versus 3 T scans of the same subjects to
detect correlations between ongoing atrophy and cognitive
decline. For this, we correlated temporal lobe rates of atro-
phy (at the voxel-wise level) with standard cognitive
measures including the Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS-Cog), mini-mental sate
examination (MMSE), and clinical dementia rating (CDR),
all standard tests that are widely used in studies of AD.

As 3 and 1.5 T scanning each have strengths and weak-
nesses, we assessed the hypothesis that estimated sample
sizes for AD and MCI groups would differ at 1.5 versus 3
T, but we used a two-tailed hypothesis test, as there is an
active debate regarding which is superior, depending on
the application. We also tested whether declines in cogni-
tive scores (ADAS-cog, MMSE, and CDR-SB scores) were
strongly correlated with the detected rate of temporal lobe
atrophy at 3 T, based on the notion that there may be
greater signal drop-out and non-disease-related distortions
at the temporal poles. Still, we expected this limitation to
be partially mitigated by using a statistically predefined
ROI that focused on areas where atrophy was detectable
in an independent sample at each field strength, thereby
explicitly avoiding voxels where power was diminished.
Field strength effects were tested against the null hypothe-
sis that the field strength made no difference; to test this,
we used a permutation approach.

MATERIALS AND METHODS

Subjects

Imaging data for this study was obtained from the Alz-
heimer’s Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI) [Mueller et al., 2005a,b]. One
of the largest studies of AD to date, ADNI is a 5-year col-
laborative project with support from the National Institute
of Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), nonprofit organizations, and pri-
vate pharmaceutical companies. The project began in 2003
and evaluates 800 adults, aged 55–90, including 200 el-
derly controls, 400 MCI subjects, and 200 patients with
AD. The primary goal of ADNI is to determine whether
serial MRI, positron emission tomography (PET; FDG and
amyloid imaging), other biological markers, and clinical
and neuropsychological assessments can be used as a reli-
able measure to track disease progression in patients with
MCI and AD. Identifying specific markers sensitive to
MCI and early AD is important for therapeutic develop-
ment, and for monitoring treatment effectiveness in clinical
trials when cost and time are considered. The Principal
Investigator of this initiative is Michael W. Weiner, M.D.,
VA Medical Center and University of California, San
Francisco.

1.5 and 3 T MRI scans were acquired at multiple sites
and time points. Of all subjects scanned, 25% were
scanned at 3 T at 31 of 59 participating sites. 3 and 1.5 T
scans from the same subject are shown in Figure 1 for pur-
poses of visual comparison. There are no striking visible
differences, although the gray/white matter contrast
appears slightly greater at 3 T, at least in this randomly
selected subject. In this article, 110 subjects scanned at
both 1.5 and 3 T were analyzed over a 1-year follow-up
interval to assess structural brain change. Although the
ADNI dataset contains many more 3 and 1.5 T scans than
analyzed in this study, we restricted our attention to sub-
jects with baseline and 12-month follow-up scans from
both 1.5 and 3 T MRI scanners. This was done to avoid
cohort effects; we were concerned that if we analyzed a
different set of subjects at each field strength, it would be
unclear whether any detected differences might be partly
attributable to differences in the cohorts (e.g., age, sex,
educational level, severity of AD, or other unidentified fac-
tors, etc.). While, in principle, this additional variability
could also be corrected by including these attributes as
covariates, such models are invariably imperfect and some
bias due to imperfect matching would remain. Subjects
were divided into three groups: 24 patients with AD (base-
line age: 74.8 � 9.2 years), 51 amnestic MCI subjects (base-
line age: 74.1 � 8.0 years), and 35 healthy elderly controls
(baseline age: 75.9 � 4.6 years; subject demographics are
shown in Table I).

All subjects completed detailed clinical and cognitive
assessments including the Alzheimer’s Disease Assessment
Scale (ADAS-Cog), Mini-Mental State Examination
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(MMSE), and the Clinical Dementia Rating Sum-of-Boxes
score (CDR-SB) at the time of the baseline and follow-up
scans. ADAS-Cog is based on a 70-point scale designed to
measure the severity of cognitive impairment, and is cur-
rently the most widely used cognitive measure in AD tri-
als [Rosen et al., 1984]. It consists of 11 tasks assessing
learning and memory, language production and compre-
hension, constructional and ideational praxis, and orienta-
tion. The MMSE, with scores ranging from 0 to 30,
provides a global measure of mental status based on five
cognitive domains: orientation registration, attention and
calculation, recall, and language [Cockrell and Folstein,
1988; Folstein et al., 1975]. Scores lower than 24 are typi-
cally associated with dementia. The sum-of-boxes clinical
dementia rating (CDR-SB), ranging from 0 to 18, measures
dementia severity by evaluating patients’ performance in
six domains: memory, orientation, judgment and problem
solving, community affairs, home and hobbies, and perso-
nal care [Berg, 1988; Hughes et al., 1982; Morris, 1993]. All

patients with AD met NINCDS/ADRDA criteria for prob-
able AD [McKhann et al., 1984]. On average, patients with
AD in this study were considered to have mild to moder-
ate, but not severe AD with baseline MMSE score 22.6 �
1.96, CDR-SB score of 4.1 � 5.1, and ADAS-Cog of 17.7 �
5.66. Average MMSE, CDR-SB, and ADAS-Cog scores for
each group are displayed in Table I. Detailed exclusion cri-
teria may be found in the ADNI protocol [Mueller et al.,
2005a,b].

MRI Acquisition, Image Calibration, and

Correction

All subjects were scanned at multiple ADNI sites, with
31 of the total 59 sites acquiring both 1.5 and 3 T scans,
according to a standardized protocol developed after a
major effort to evaluate 3D T1-weighted sequences for
morphometric analyses [Jack et al., 2008a; Leow et al.,
2006]. High-resolution structural brain MRI scans were
acquired using 1.5 and 3 T MRI scanners from General
Electric Healthcare, Philips, and Siemens Medical Solu-
tions (Table II shows the breakdown of the number of
patients by scanner vendor).

In the 1.5 T scanning protocol, each subject underwent
two 1.5 T T1-weighted MRI scans using a 3D sagittal
volumetric magnetization prepared rapid gradient echo
(MP-RAGE) sequence. As described in Jack et al. [2008],
typical 1.5 T acquisition parameters are repetition time
(TR) of 2,400 ms, minimum full TE, inversion time (TI) of
1,000 ms, flip angle 8�, 24 cm field of view, with a 256 �
256 � 170 acquisition matrix in the x-, y-, and z-dimen-
sions yielding a voxel size of 1.25 � 1.25 � 1.2 mm3. In-
plane, zero-filled reconstruction yielded a 256 � 256
matrix for a reconstructed voxel size of 0.9375 � 0.9375 �
1.2 mm3. For 3 T scans, acquisition parameters were repe-
tition time (TR) of 2,300 ms, minimum full TE, inversion
time (TI) of 900 ms, flip angle 8�, 26 cm field of view, with
a 256 � 256 � 170 acquisition matrix in the x-, y-, and z-
dimensions yielding a voxel size of 1.0 � 1.0 � 1.2 mm3. In
plane, zero-filled reconstruction yielded a 256 � 256 matrix
for a reconstructed voxel size of 1.0 � 1.0 � 1.2 mm3,

Figure 1.

1.5 T and 3 T MRI from the same subject. Note the marginally

higher gray/white matter contrast in some regions (e.g., the

internal capsule) and slightly higher spatial resolution at 3 T, but

no other striking differences are apparent.

TABLE I. Patient demographics and cognitive scores

Measures CTL MCI AD

Number of subjects 35 (13 M/22 F) 51 (30 M/21 F) 24 (10 M/14 F)
Age (years) 75.9 � 4.6 74.1 � 8.0 (NS) 74.8 � 9.2 (NS)
Baseline CDR-SB 0.0 � 0.0 1.66 � 0.86** 4.1 � 1.53**
Change in CDR-SB 0.057 � 0.21 1.03 � 1.52** 1.04 � 1.19**
Baseline ADAS-Cog 5.05 � 2.45 11.7 � 4.39** 17.7 � 5.66**
Change in ADAS-Cog 0.18 � 2.85 2.43 � 5.27* 3.29 � 5.01**
Baseline MMSE 29.3 � 0.80 26.6 � 2.0** 22.6 � 1.96**
Change in MMSE �0.06 � 1.31 �1.18 � 2.90* �0.96 � 3.81 (NS)

Two-sample t-tests show which measures differed from those in controls: (NS) denotes not significant.
*P < 0.05; **P < 0.01. Two-tailed tests were used to test for age differences; one-tailed tests were used for cognitive scores and changes,
on the premise that scores would be expected to be poorer and declines greater in AD and MCI than in controls.
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although this reconstructed voxel size can be further
decreased with sinc interpolation, if desired. The ADNI MR
imaging protocol [Jack et al., 2008] compensated for the
increased chemical shift and susceptibility artifacts observed
at 3 T by doubling the receive bandwidth compared to the
1.5 T acquisition. This change costs a factor of

ffiffiffi

2
p

in the sig-
nal-to-noise ratio (SNR). SNR approximately doubles at 3 T
compared to 1.5 T; the remaining factor of

ffiffiffi

2
p

was used to
increase the spatial resolution of the 3 T protocol as
described earlier. When necessary, the transmit bandwidth
of the inversion RF pulse was also increased at 3 T to elimi-
nate incomplete inversion artifacts [Bernstein et al., 2006].
On modern systems with phased array receive coils, the ac-
quisition time at 1.5 T was approximately 7.7 min, com-
pared to 9.3 min at 3 T. Because of differences in hardware,
spin relaxation properties, chemical shift properties, and
susceptibility artifacts at 1.5 and 3 T, the sequence parame-
ters were not identical on the two scanners. Even so,
sequences were optimized as much as possible to obtain
similar tissue contrast at both field strengths.

Additional image corrections were also applied, using a
processing pipeline at the Mayo Clinic, consisting of the
following: (1) a procedure termed GradWarp for correction
of geometric distortion due to gradient nonlinearity [Jovi-
cich et al., 2006], (2) a ‘‘B1-correction,’’ to adjust for image
intensity inhomogeneity due to B1 nonuniformity using
calibration scans [Jack et al., 2008], (3) ‘‘N3’’ bias field cor-
rection, for reducing residual intensity inhomogeneity
[Sled et al., 1998], and (4) geometrical scaling, according to
a phantom scan acquired for each subject [Jack et al.,
2008], to adjust for scanner- and session-specific calibration
errors. In addition to the original uncorrected image files,
images with all of these corrections already applied (Grad-
Warp, B1, phantom scaling, and N3) are available to the
general scientific community (at www.loni.ucla.edu/
ADNI).

Image Preprocessing

To adjust for global differences in brain positioning and
scale across individuals, all scans were linearly registered
to the stereotactic space defined by the International Con-
sortium for Brain Mapping (ICBM-53) [Mazziotta et al.,
2001] with a 9-parameter (9P) transformation (3 transla-
tions, 3 rotations, 3 scales) using the Minctracc algorithm
[Collins et al., 1994]. Follow-up scans were linearly

registered to its matching baseline scan using a 9P regis-
tration. Both mutually aligned scans were then linearly
registered to the ICBM-53. Globally aligned images were
resampled in an isotropic space of 220 voxels along each
axis (x, y, and z) with a final voxel size of 1 mm3.

Minimal Deformation Target

For each field strength, a separate minimal deformation
target (MDT), or group mean template, was constructed.
This has been advocated in prior studies to reduce bias
and improve statistical power [Hua et al., 2008a,b; Kochu-
nov et al., 2001; Leporé et al., 2008]. The MDT was con-
structed using 40 normal controls’ baseline scans as in our
prior studies [Hua et al., 2008a,b]. A separate MDT tem-
plate was created for the 1.5 T and for the 3 T scans (these
average brain templates are shown in Fig. 2). To create the
MDT, we first created an affine average template using an
average of the globally-aligned scans after 9-parameter
(9P) normalization. Next, a nonlinear average template
was made by warping individual brain scans to the initial
affine template. We used a nonlinear inverse consistent
elastic intensity-based registration algorithm [Leow et al.,
2005], which optimizes a joint cost function based on mu-
tual information (MI) and the smoothness of the deforma-
tion fields. The deformation field was computed using a
spectral method to implement the Cauchy–Navier elastic-
ity operator [Marsden et al., 1983; Thompson et al., 2000]
using a Fast Fourier Transform (FFT) resolution of 32 � 32
� 32. After the 40 scans were nonlinearly registered to the
affine template, the average of these scans was used to cre-
ate a nonlinear average intensity template. Then the MDT
is created after applying inverse geometric centering of the
displacement fields to the nonlinear average template (see

TABLE II. Breakdown of the number of patients by

scanner vendor

Vendor Siemens Philips GE Medical

1.5 T 20 13 77
3 T 65 29 16

Most 3 T scans were acquired on Siemens scanners, but most of
the 1.5 T scans were collected on GE scanners.

Figure 2.

Minimal Deformation Template (MDT) based on 1.5 T scans

(top) and 3.0 T scans (bottom). There are no obvious differen-

ces in contrast or anatomical structure differentiation in these

group mean templates.
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Kochunov et al., 2002, 2005; Lepore et al., 2008, for related
work and the rationale for this step).

To quantify 3D patterns of volumetric brain atrophy
over time for each subject, an individual brain change
map (Jacobian determinant map) was created using an
unbiased symmetric Kullback-Leibler (sKL) method based
on mutual information [Yanovsky et al., 2007, 2008]. 1.5 T
baseline scans (N ¼ 110) were first nonlinearly registered
to the MDT specific for the 1.5 T normal group, and all 3
T baseline scans (N ¼ 110) were nonlinearly registered to
the MDT specific to the 3 T normal group [Hua et al.,
2008a,b; Yanovsky et al., 2008]. After each scan was
aligned to the MDT for its respective field strength, a Jaco-
bian matrix field reflecting the gradients of the deforma-
tion field was derived for each subject. For 12-month
follow-up scans, the follow-up scan for each subject was
linearly and then nonlinearly registered to its correspond-
ing baseline scan again using the same registration algo-
rithm. Maps of change were shown on the baseline image
warped to the MDT space.

Statistical Tests

Group comparisons

To illustrate systematic differences in atrophic rates
between groups (AD or MCI vs. normal), we constructed
voxel-wise statistical maps based on the Student’s t-statis-
tic. We corrected for the multiple comparisons implicit in
making a statistical map, by using permutation tests [Bull-
more et al., 1999; Chiang et al., 2007; Nichols and Holmes,
2002; Thompson et al., 2003]. In brief, a null distribution
for the group differences in atrophic rates (Jacobian val-
ues) at each voxel was constructed using 5,000 random
permutations. For each test, the subjects’ diagnosis was
randomly permuted and voxel-wise t-statistics were calcu-
lated. A ratio, describing the fraction of the time the t-sta-
tistic was more extreme in the randomized tests than the
original test, was calculated to give a permutation-based
P-value for the significance at each voxel. A ‘‘global
P-value,’’ describing the fraction of the time the supra-
threshold volume (P < 0.01, uncorrected) was greater in
the randomized maps than the real effect (the original
labeling), was calculated to determine whether any signifi-
cant changes could be detected across the brain. This pro-
cedure has been used in many prior reports [Braskie et al.,
2008; Chiang et al., 2007; Chou et al., 2009]. The permuta-
tion testing therefore controlled for the number of vertices
above P < 0.01 in the entire map (0.01 was chosen as the
primary threshold at the voxel level, although other values
could arguably be used). This is one of several standard
ways to set up a permutation test and is sometimes called
set-level inference. It deems a map significant when the
total quantity of voxels with P-values lower than a fixed a
priori threshold exceeds that obtained in 95% of random
simulations.

Cumulative distribution function plots

Cumulative distribution function (CDF) plots were com-
piled based on the P-values generated in the two-sample
t-tests. These were used to compare the effect sizes of
effects of covariates of interest in all three groups [Lepore
et al., 2008, Hua et al., 2008a,b; Morra et al., 2008]. The
false discovery rate (FDR) method was used to assign
overall significance values to each statistical map, based
on the expected proportions of voxels with statistics
exceeding any given threshold under the null hypothesis
[Benjamini and Hochberg, 1995; Genovese et al., 2002;
Storey, 2002].

Correlations of structural brain differences

with cognitive measures

Correlations were computed at every voxel between
rates of atrophy and cognitive scores using the Spearman’s
correlation. Interval changes (over 1 year) in scores from
the Alzheimer’s Disease Assessment Scale-cognitive sub-
scale (ADAS-Cog), Mini-Mental State Examination
(MMSE), and the Clinical Dementia Rating Sum-of-Boxes
scales (CDR-SB) were correlated, at the voxel level, with
structural brain changes over time after controlling for age
and sex [Hua et al., 2008a,b; Leow et al., 2009; Morra
et al., 2008]. All correlation maps were corrected for multi-
ple comparisons as described earlier, using the FDR
method.

Sample size

Using a statistically defined ROI based on voxels with
significant atrophic rates (P < 0.00001) in a nonoverlap-
ping training set of 22 patients with AD, a mean atrophic
rate was computed for each subject [Hua et al., 2009;
Reiman and Langbaum, 2009; Reiman et al., 2008]. A stat-
istically-defined ROI was created for each group of scans.
Prior studies have found that sample size estimates are
relatively stable with respect to the statistical threshold
used to define the statistically predefined ROI [Hua et al.,
2009]. For each subject, the average annual change across
all voxels within the predefined ROI was computed and
used to estimate the sample size needed to detect a treat-
ment effect of known magnitude in a hypothetical clinical
trial. Using these numeric summaries, we computed the
number of subjects needed to detect 25% reduction in the
mean annual rate of brain change with 80 or 90% confi-
dence and a false positive probability of a ¼ 0.05 [Rosner,
1990]. We estimated the sample size required to achieve
80% and 90% power (subsequently we will refer to these
as n80 and n90). These power estimates were generated to
evaluate the effects of field strength (1.5 T versus 3 T) on
estimated minimal sample sizes. The estimated minimum
sample size for each arm was computed from the formula:
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n ¼ 2r̂2
Dðz1�a=2 þ zpowerÞ2

ð0:25b̂Þ2

Here za is the value of the standard normal distribution
for which P[Z < za] ¼ a and in this case we set a to its
conventional value of 0.05 [Rosner, 1990].

RESULTS

3D Maps of Brain Atrophy

Mean brain structural change maps were derived from
averaging individual rate-of-atrophy (Jacobian) maps
within each group (AD, MCI, and normal control), reflect-
ing mean percent tissue loss over 1 year. Statistical maps
were derived comparing AD with controls (Figs. 3 and 4)
and MCI with controls (Figs. 5 and 6). Maps comparing
patients with AD to normal controls show a widespread
atrophic pattern, with faster ongoing atrophy in AD espe-
cially in the temporal lobe, and faster expansion of ventric-
ular and CSF spaces in AD versus controls. Maps
comparing MCI to normal controls reflect a much more re-
stricted region with faster atrophic rates in MCI. Intrigu-
ingly, 3D maps comparing patients with AD and normal

controls showed a much more widespread pattern of sig-
nificant atrophy when scanned at 3 T (Fig. 3) versus 1.5 T
(Fig. 4), in the sense that the number of voxels passing the
weak P ¼ 0.05 voxel-level statistical threshold was greater.
This may be due to the marginally higher spatial resolu-
tion and contrast of the 3 T scans. Both 3 and 1.5 T scans
showed significant temporal lobe atrophy as expected. Per-
mutation tests were conducted to determine the overall
significance of the maps in Figures 3–6 (bottom panel),
corrected for multiple comparisons. The estimated rates of
atrophy were higher in the white matter than in the cortex
(see Discussion).

Estimates of Minimal Sample Sizes

To determine whether 3 or 1.5 T MRI had greater power
in detecting effects on temporal lobe volume loss over 1
year, we computed the sample size per arm needed to
measure a 25% slowing of the atrophic rate with 80 and
90% power (a ¼ 0.05) (Fig. 7). For both the AD and MCI
groups, 1.5 T MRI (n80 ¼ 37 for AD, 108 for MCI) did not
show a statistically different sample size estimate to detect
temporal lobe atrophy when compared to 3 T (n80 ¼ 49
for AD, 166 for MCI). To determine whether these sample
size estimates were statistically different, we ran 10,000

Figure 3.

AD (n ¼ 24) versus controls (n ¼ 35) scanned at 3 T. The top

panels reflect the mean level of atrophy as a percentage reduc-

tion in volume over one year (%/year) beyond that found in con-

trols (in other words, the mean control rate of atrophy has

been subtracted out). Blue colors represent volume reduction

while red colors represent volume expansion. Corresponding

color-coded P maps show where atrophy in AD is significantly

faster than in controls (bottom panels). The majority of the

brain shows faster change in AD than controls. It is important

to note that the regions of atrophy shown in this figure repre-

sent excess atrophy over and above age-related atrophy. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

Figure 4.

AD (n ¼ 24) versus controls (n ¼ 35) scanned at 1.5 T. The top

panels reflect the mean level of atrophy as a percentage reduc-

tion in volume over one year (%/year) by comparing AD versus

controls. Again, the mean rate of atrophy in controls has been

subtracted out. Blue colors represent progressive volume

reductions; red colors represent volume expansions (e.g., in the

lateral ventricles, which expand in AD). Corresponding color-

coded P maps show the local significance of these differences

indicated in the bottom panels. It is important to note that the

regions of atrophy shown in this figure represent excess atrophy

over and above age-related atrophy. [Color figure can be viewed

in the online issue, which is available at www.interscience.

wiley.com.]
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permutations of a mixed sample of 50% 1.5 T scans and
50% 3 T from each diagnostic group (AD and MCI) to
obtain a null distribution of sample size estimates based
on the null hypothesis that the scanner type makes no dif-
ference (see histogram in Fig. 8 [top row]). Next, we
ranked the 1.5 T power estimates for both AD and MCI
and found that neither was in the outer 5% (i.e., P < 0.05)
of the null distribution, showing that the 1.5 T power esti-
mates were not significantly better.

To explore further whether the results regarding differ-
ences between scanners were dependent on the method
used (TBM), we also used an independent method to com-
pute a measure of the overall percentage brain volume
change, and thus a second set of sample size estimates
(Fig. 8, bottom row). We used Structural Image Evaluation,
using Normalisation, of Atrophy (SIENA), an FSL program
that estimates a two time-point percentage brain volume
change [Smith et al., 2002, 2004]. SIENA estimates the per-
centage brain volume change (PBVC) between two input
images from the same subject, by calling a series of FSL
programs to strip the non-brain tissue from the two
images, register the two brains (using the scalp as a con-
straint to hold the scaling constant during the registration)
and estimates the brain change between the two time
points. The estimated sample sizes were greater for the
SIENA analysis (AD: n80 ¼ 116 for 1.5 T and 92 for 3 T;

Figure 6.

MCI (n ¼ 51) versus controls (n ¼ 35) scanned at 1.5 T. The

top panels reflect the mean level of atrophy as a percentage

reduction in volume over one year (%/year) by comparing MCI

versus controls. Blue colors represent volume reduction while

red colors represent volume expansion. Corresponding color-

coded P maps show the local significance of these differences

indicated in the bottom panels. It is important to note that the

regions of atrophy shown in this figure represent excess atrophy

over and above age-related atrophy. [Color figure can be viewed

in the online issue, which is available at www.interscience.

wiley.com.]

Figure 7.

Sample size estimates with 80% power when mixing 1.5 T and

3 T scans. The lowest sample size number (n80), indicating

greatest power, is found in the 1.5 T group when using the stat-

istically-defined ROI based on 1.5 T scans. The worst

performance arises when analyzing the 3 T scans using the

1.5 T-specific statistical ROI. Power can be increased in the 3 T

group if a statistically-defined ROI based on 3 T scans is used

instead, perhaps because some voxels with artifacts are avoided.

Mixing 1.5 and 3 T scans does not affect the n80 adversely, and

sample sizes for mixed scanner designs lie in between those

using 1.5 or 3 T exclusively. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 5.

MCI (n ¼ 51) versus controls (n ¼ 35) scanned at 3 T. The top

panels reflect the mean level of atrophy as a percentage reduc-

tion in volume over one year (%/year) by comparing MCI versus

controls. Again, the mean rate of atrophy in controls has been

subtracted out. Blue colors represent progressive volume reduc-

tions; red colors represent volume expansions. Corresponding

color-coded P maps show the local significance of these differen-

ces indicated in the bottom panels. It is important to note that

the regions of atrophy shown in this figure represent excess

atrophy over and above age-related atrophy. [Color figure can

be viewed in the online issue, which is available at www.interscience.

wiley.com.]
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MCI: n80 ¼ 207 for 1.5 T and 265 for 3 T) when compared
to the power numbers computed using TBM (Table III).
Even so, the pattern of results was entirely consistent
between the two methods: in general, there was no evi-
dence that one field strength gave better power than the
other, for either analysis method. Power was somewhat
higher for TBM than for SIENA, and it was higher for
analyses of AD than for MCI; even so, power was rela-
tively good for both methods.

In addition, we computed estimates of the minimal sam-
ple size for various study designs that allowed mixing of

images from both 3 and 1.5 T scanners (Fig. 7). This corre-
sponds to the practical situation of running a multisite
clinical trial where not all sites can scan at the same field
strength. For each combined group of scans (25% 3 T, 75%
1.5 T; 50% 3 T, 50% 1.5 T; 75% 3 T, 25% 1.5 T), 1.5 and 3 T
scans were selected at random, while ensuring that the
number of subjects from each diagnostic group (AD, MCI,
and controls) remained consistent. The n80 numbers in
Figure 7 reflect average values after repeated random per-
mutations for each combination of scans; we bootstrapped
these estimates to avoid any dependency on the particular

Figure 8.

Distribution of power estimates based on the null hypothesis

that the scanner type makes no difference. Here we computed

minimum sample size estimates based on 10,000 random permu-

tations mixing 1.5 and 3 T scans for TBM analysis (top row) and

for SIENA analysis (bottom row). For TBM, the ‘‘power esti-

mates’’ on the x-axis represent the estimated sample sizes (AD:

n80 ¼ 37 for 1.5 T and 49 for 3 T; MCI: n80¼107 for 1.5 T and

166 for 3 T) required to detect a 25% reduction in atrophy

(with 80% power) for AD (left) and MCI (right) groups. For

SIENA, the estimated sample sizes are numerically greater (AD:

n80 ¼ 116 for 1.5 T and 92 for 3 T; MCI: n80 ¼ 207 for 1.5 T

and 265 for 3 T). The red lines indicate the estimated sample

sizes for designs that exclusively used 1.5 T scans or exclusively

used 3 T; dashed lines indicate the boundary that excludes the

outer 5% of the null distribution of sample sizes that occur from

randomly mixing scanners. None of the red lines falls in the

outer 5% of the null distribution, so we cannot reject the null

hypothesis that the scanner field strength makes no difference.

In other words, there is no detectable difference in power;

power was excellent at both field strengths, and, as expected,

was somewhat higher for AD than for MCI. For TBM analysis,

the 3 T scanner gave a power estimate, for the MCI group, that

was within the outer 11% of the power estimates obtained by

randomly mixing scanners. The 3 T scanner gave a power esti-

mate, for the AD group, that was within the outer 25% of the

power estimates obtained by randomly mixing scanners. [Color

figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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individuals assigned to each field strength. Regardless of
these estimates, for practical reasons, a multisite study
may be easier to design if scanners of two different field
strengths can be accommodated, as some sites have only
one scanner. Naturally, however, any given subject should
be scanned exclusively at single field strength during the
course of any longitudinal study.

One might hypothesize that mixing data from different
field strengths would incur a severe loss of power relative
to using only one field strength, but that was not the case.
In Figure 7, the second and third columns show that the
minimal sample sizes are numerically slightly larger at 3 T
for MCI (n80: 166 for 3 T versus 107 for 1.5 T), but they
are very similar for AD (49 at 3 T and 37 for 1.5 T). How-
ever, field strength had no detectable effect on these power
estimates, in either the MCI or AD groups, because the n80s
for 1.5 and 3 T scans only, did not fall in the outer 5% of the
null distribution (see histogram in Fig. 8). Before any judg-
ment is made as to whether these differences in estimated
sample sizes are practically significant or not, it is worth
noting that they are around six times lower (i.e., better) than
the estimated sample sizes for the best clinical measures,
CDR-SB for detecting change between AD and controls as
well as MCI subjects and controls (highlighted in Table IV).

Such a sample size difference of around 58 MCI subjects
for 3 versus 1.5 T might be regarded as somewhat trivial
when past studies using ADAS-Cog or MMSE would
require over a thousand subjects to detect the same per-
cent slowing of disease progression in MCI. Second, the
power for 3 T slightly worsened when summarizing
atrophic rates using the statistical ROI derived at 1.5 T, rel-
ative to using the statistical ROI derived at 3 T. This is to
be expected, as the main reason to develop a predefined
ROI in an independent sample is to rule out voxels that
are showing lower effect sizes. In a 3 T study where some
temporal lobe distortions are expected, the 1.5 T ROI is
slightly larger than the 3 T ROI, so by definition it is
including voxels with lower effect sizes than would have
been the case if the 3 T ROI were used. The next three
data points in Figure 7 (columns 4–6) show power esti-
mates for scans in various ratios, including 75% 3 T scans
and 25% 1.5 T scans, equal numbers of scans at each field
strength, and a 75:25 mix with 1.5 T scans outnumbering 3
T scans. Interestingly, power estimates were not substan-

tially worse––when using mixes of scanners––than they
were when using one field strength exclusively; sample
size requirements were intermediate between those achiev-
able when using each field strength exclusively. There is
no mathematical reason why mixing field strengths would
be advantageous; even so, mixing scanners, which may be
more practically feasible, does not result in a drastic deple-
tion of power. Finally, the power does not increase when
using a whole brain ROI, which may capture regions with
ongoing atrophy that do not fall in the temporal lobe ROI.
In other words, it is helpful to restrict the ROI based on
both anatomic criteria (temporal lobe only) and statistical
training (voxels with high effect sizes in independent
training data). The last two columns in Figure 7 (columns
7 and 8) reflect power numbers that are no better than the
ROI specific to the temporal lobe, with the 3 T group again
having a worse power estimate than the 1.5 T group.

Correlations of Temporal Lobe Atrophy With

Cognitive Decline

We assessed how these brain changes relate to measures
of cognitive decline over the 1-year period, by correlating
changes in cognitive scores (ADAS-cog, MMSE, and CDR-
SB) with longitudinal rates of temporal lobe atrophy
within the statistically-defined ROI at each field strength,
after controlling for age and sex. (Note that in a real clini-
cal trial, it may make more sense to use only one single
ROI, but here, because we wanted to study field strength
effects specifically, being fair to each field strength, we
made separate ROIs for 3 and 1.5 T here to avoid biasing
the results in favor of one field strength). Here, we used
CDF plots to display the relative effect sizes for the associ-
ations between rates of temporal lobe atrophy and changes
in ADAS-Cog, MMSE, and CDR-SB scores (Fig. 9). The
clinical score that correlated the most strongly with higher
rates of temporal lobe atrophy was 1-year a decrease in

TABLE III. Sample size estimates (with 80% power) for

TBM-derived measures versus SIENA-derived measures

TBM SIENA

1.5 T MRI AD MCI 1.5 T MRI AD MCI
n80 37 107 n80 116 207

3 T MRI AD MCI 3 T MRI AD MCI
n80 48 159 n80 92 265

Power was excellent at both field strengths and somewhat higher
for AD than for MCI, as expected.

TABLE IV. Comparison of sample size estimates

(with 80% power) between TBM-derived measures

and clinical measures

AD MCI

Loss rate %/year (1.5 T) 37 108
Loss rate %/year (3 T) 49 166
Change in CDR-SB 327 549
Change in ADAS-Cog 583 1183
Change in MMSE 3962 1531

These numbers are calculated based on the same sample of
subjects. Both 1.5 and 3 T scans (using a TBM-derived loss rate in
%/year) have a much lower n80 compared to the cognitive meas-
ures. These estimates may differ slightly from those in prior
reports, as they depend to some degree on the specific cohort
studied. Also, perhaps paradoxically, the change in MMSE has
greater effect size in MCI than AD, so for that score, the sample
size estimates are smaller for MCI than for AD.
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CDR-SB scores for both field strengths. As expected, CDR-
SB decline correlated with marginally higher effect sizes in
the 1.5 T MRI (critical value ¼ 70%) when compared to
3 T MRI (critical value ¼ 38%). In false discovery rate
theory, the critical value is the highest fraction of the
image that can be shown as significant while keeping the
expected false discovery rate below 5%. Interval decline in
MMSE and ADAS-Cog scores did not show significant
associations with brain changes in this sample, when cor-
rected for multiple comparisons with FDR, at either field
strength. As we noted before, these correlations are
undoubtedly detectable in a larger sample, but here our
sample size was limited to 110 subjects as we wanted to
include only subjects scanned on two different scanners.
As in our prior study of 100 subjects scanned 1 year apart
at 1.5 T [Leow et al., 2009], we also analyzed correlations
between atrophic rates and CSF-derived measures of A-beta
and Tau proteins, but these were not significant at either
field strength. This is probably because only 60 of the 110
subjects in this had available data on CSF-derived measures
of A-beta and Tau proteins; in our prior study we included
more subjects with pathology measures as we did not
require that subjects were also scanned on two different
scanners. CSF measures of pathology may also represent trait
rather than state markers and may not change much with
disease progression. If that is the case, then there would not
be a strong expectation that the rate of atrophy would corre-
late with CSF-derived measures of A-beta and Tau proteins.

DISCUSSION

In this article, we found that sample size estimates
derived from TBM measures in both 3 and 1.5 T groups

were substantially better than all those based on cognitive
or clinical measures MMSE, CDR-SB, and ADAS-Cog. The
best functional measure for detecting MCI, in terms of
requiring the smallest samples, was the CDR-SB, but this
was still five times worse than TBM (549 versus 108 for
TBM at 1.5 T; Table IV). In a sense, the CDR-SB is a func-
tional measure rather than a cognitive score, (i.e. it is an
informant-based assessment). Even so, the overall message
would be that structural MRI imaging at any field strength
can provide dramatically reduced sample sizes than even
the best cognitive scores. Sample size estimates for detect-
ing a 25% slowing of MCI were not statistically worse at 3
T versus 1.5 T (n80 ¼ 166 at 3 T versus 108 at 1.5 T). Even
so, the slightly higher sample size numbers to detect
changes in the 3 T MCI group, also found by another
group studying the same population [Alexander et al., per-
sonal communication], may be due to minor geometric
distortions, residual intensity inhomogeneities, magnetic
susceptibility effects, increased patient motion due to lon-
ger scan times and acoustic noise, and other artifacts that
are generally harder to control at higher field strengths.
Perhaps surprisingly, mixing scanners with different field
strengths does not result in a drastic loss of power relative
to using images collected at only one field strength,
although power was marginally worse than using 1.5 T
scanners only.

Several papers have investigated brain change on MRI
over one year in the ADNI dataset [Hua et al., 2009; Leow
et al., 2009; Misra et al., 2008; Morra et al., 2008; Nestor
et al., 2008; Schuff et al., 2009]; to our knowledge however,
our article is the only study to compare longitudinal data
at 1.5 and 3 T MRI. Other groups have investigated field
strength effects on the detection of signal abnormalities
[Di Perri et al., 2009], reliability of imaging measures [Jovi-
cich et al., 2006], measurement of image-derived parame-
ters [Lu et al., 2005], and diagnostic benefits [Frayne et al.,
2003], primarily focusing on 1.5 versus 3 T scanning.

This study further confirms past independent reports
that neuroimaging measures require a drastically lower
sample size than cognitive measures to detect neurodege-
nerative changes [Fox et al., 2000; Jack et al., 2004; Schuff
et al., 2009]. Volumes of the hippocampus and entorhinal
cortex are effective neuroimaging markers compared to
cognitive scores, with sample size estimates about 10 times
lower [Jack et al., 2004]. TBM measures based on the tem-
poral lobe [Hua et al., 2008a,b] derived here from an
empirically-defined statistical ROI (see Hua et al., 2009 for
details) have similar advantages over cognitive scores. In
this article, the smallest sample sizes were required for the
1.5 T scans (n80: 37 for AD, 108 for MCI) using a 1.5 T-
specific statistically-defined ROI. The 3 T power estimates
(n80: 49 for AD, 166 for MCI), based on a 3 T-specific stat-
istically-defined ROI, were slightly poorer, but not statisti-
cally different.

Even though the sample sizes needed to detect a fixed
percent reduction in the rate of progression are lower for
TBM than for clinical scores, we must bear in mind that a

Figure 9.

CDF plots for voxel-wise correlations of temporal lobe atrophic

rates across all subjects (n ¼ 110, including AD, MCI, and con-

trols) with 1-year interval changes in cognitive scores ADASCog,

MMSE, and CDR-SB. Overall, scores were correlated with slightly

higher effect sizes at 1.5 T compared to 3 T. CDR-SB was the clini-

cal score that correlated most strongly with temporal lobe atrophy,

at both 1.5 and 3 T. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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given effect size on a clinical scale may have very different
consequences for the patient than an effect of the same
magnitude on an MRI scale. In other words, power com-
parisons between imaging and clinical measures should be
performed cautiously, as a certain percent reduction in the
rate of progression may have very different meanings for
clinical scores versus MRI. MRI measures, in particular,
may include some regional changes that do not have a
direct bearing on the cognition or well-being of the
patient. A change with a certain fixed effect size on a clini-
cal scale may be of more importance than a comparable
reduction in the atrophic rate.

Our sample size estimates are based on assuming a 25%
slowing of the rate of atrophy. In reality, treatments may
slow atrophy to different degrees. Even so, the sample size
estimates required to detect a k% slowing of atrophy can
be easily derived by multiplying the numbers in this paper
by (25/k)2. To see this, we note that the estimated minimum
sample size for each arm is computed from the formula:

n ¼ 2r̂2
Dðz1�a=2 þ zpowerÞ2

ð0:25b̂Þ2

where za is the value of the standard normal distribution
for which P[Z < za] ¼ a, and in this case we set a to its
conventional value of 0.05 [Rosner, 1990]. The number 0.25
appears in this formula as a multiplier on the effect size,
beta, and represents an assumption of a 25% slowing of at-
rophy. Assuming, more generally, that there is a k% slow-
ing of the atrophic rate, the required sample size to detect
it, n, is proportional to 1/k2. This inverse-square law
means that a 10% slowing of atrophy would need four
times as many subjects to detect as a 20% slowing of atro-
phy, and a 5% slowing of atrophy would need 16 times as
many subjects to detect as a 20% slowing of atrophy. This
quadratic dependency is illustrated in Figure 10. The effect
on the histograms of assuming a k% slowing of atrophy,
rather than a 25% slowing of atrophy, would be to stretch
the histograms horizontally by a factor of (25/k)2.

The effect of assuming any other fixed percentage slowing
of atrophy can therefore be computed by multiplying all the
numbers in this article by a fixed number. Consequently, it
would make no difference to the findings reported here, if
we assumed a treatment could slow atrophy by a different
proportion. The significance of all the statistical tests would
be unaffected, as multiplying all the variables by a fixed con-
stant does not alter any effect sizes in the statistical tests.

Here we based our sample size calculations on a statisti-
cal test that would have known power (80%) to detect a
certain percent slowing (25% slowing) of the rate of atro-
phy. This definition has been adopted in other studies—
one study used 25% and 50% slowing of the average rate
of change with 80% and 90% power [Jack et al., 2004], and
another study used a 25% slowing with 90% power [Schuff
et al., 2009]. One could also consider an alternative sample
size definition based on how many subjects would be

needed to detect a 25% reduction in brain volume over an
interval, with a specific level of power (e.g., 80% or 90%).
One issue with aiming to detect a certain % reduction in
brain volume is that the loss of volume is not uniform
across the brain, so an analysis method focusing on a
small number of voxels with high effect sizes would
appear to have a very high power, even if the treatment
effects on other regions of the brain were also of interest.
A more common question for treatment trials asks how
rapid the atrophic rate truly is in disease, and then consid-
ers the situation where treatment slows the atrophy by
some fixed percentage.

Even so, defining power based on % slowing of atrophy
has some acknowledged limitations. First, it does not take
into account the rate of atrophy, or its variance, in a com-
parison group of healthy normal subjects. This is because
most placebo-controlled treatment trials do not evaluate
normal subjects, but only assess people with the disease or
those at increased risk (e.g., MCI subjects) who are
randomized to different treatments. Second, if some pro-
portion of the atrophy in disease also occurs in normals,
then it may be unrealistic to expect treatments to reverse
that part of the atrophy, although that is implicit in basing
power computations on the atrophic rates in one group
only. Even so, one advantage of the definition used here is
that it can be readily applied to any longitudinal assess-
ments that give numeric summaries, and can then be used
to compare analysis methods head-to-head.

Figure 10.

Sample sizes required to detect different degrees of slowing in

the rate of atrophy are shown to have a quadratic dependency.

Our sample size estimates are based on assuming a 25% slowing

of the rate of atrophy, whereas in reality, treatments may slow

atrophy to different degrees. Even so, the sample size estimates

required to detect a k% slowing of atrophy can be easily derived

by multiplying the numbers in this article by (25/k)2. [Color fig-

ure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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To calculate power estimates and compute the CDF
plots, we used an empirically derived predefined statistical
ROI, a method recently advocated by Reiman and Chen
for PET analysis [Reiman et al., 2008; Chen et al., 2009];
we adapted this for MRI analysis in [Hua et al., 2009]. The
statistically-defined ROI is based on an independent train-
ing sample and improves power by concentrating on
changes typically observed in patients with AD. The statis-
tical ROI is also adaptive to the data. Using it assumes
that a potential treatment for AD would slow rates in the
same regions as those where atrophy has the highest effect
size, which is plausible, but is not automatically the case
(this may depend on the treatment). Additionally, one
could argue that the statistical ROI is not easy to specify
as an outcome measure independent of the dataset. In clin-
ical trials regulated by the FDA, outcomes must be speci-
fied before the trial begins. Our prior study of 515 subjects
at 1.5 T [Hua et al., 2009] found that the statistical thresh-
old used to define the ROI does not greatly affect sample
sizes estimates, thresholds of p ¼ 0.001, 0.0001, and
0.00001 gave sample size estimates of 48, 50, and 52 sub-
jects for AD, and 88, 91, and 95 subjects, respectively, for
MCI. This relative insensitivity to the threshold means that
the lower values at 3 T are unlikely to be due to subopti-
mal selection of the threshold, or due to inherent biases in
the way the ROIs are generated. Paradoxically, a more
sensitive method might pick up additional voxels in the
ROI, that when averaged into the ROI could artificially
reduce the SNR. Future work will focus on improving the
way in which the statistical ROI is applied to the data
(e.g., weighting data from different voxels according to
their effect sizes, or using a machine learning principle
such as adaptive boosting; see, e.g., Morra et al., 2009].

One notable aspect of the topography of brain matter
loss in Figures 3–6 is that the greatest proportion of brain
matter loss appears to lie in the white matter rather than
the cortical surface. This is mainly because (1) the registra-
tion fields in TBM are spatially smooth and partial volume
averaging effects diminish the signal somewhat at tissue
boundaries, such as the cortex/CSF interface, and (2) the
registration accuracy of TBM is poorer at the cortical sur-
face, at least relative to some approaches that explicitly
model the cortical surface. As noted in prior work [Hua
et al., 2008a,b; Leow et al., 2009], to better sensitize the
TBM approach for detecting cortical gray matter loss, sev-
eral approaches have been considered: (1) using voxel-
based morphometry (VBM; Ashburner and Friston, 2000]
or a related approach termed RAVENS [Davatzikos et al.,
2001], (2) adaptively smoothing deformation-based com-
pression signals at each point based on the amount of
gray matter lying under the filter kernel [Studholme et al.,
2003], or (3) running deformation maps at a very high-spa-
tial resolution and with less spatial regularization or with
a regularization term that enforces continuity but not
smoothness [Leow et al., 2009].

Although we found no statistical difference in power
between the 1.5 and 3 T groups, there are several issues

associated with higher field strengths to consider. Our
analysis concentrated on changes observed in AD and
MCI within the temporal lobe. In this region, susceptibil-
ity-induced geometric distortion and signal losses may
increase noise for derived parameter estimates. These
effects are less easy to control at higher field strength. In
addition, other minor disadvantages associated with
higher field strength images include chemical shift arti-
facts, adjustments of pulse sequence parameters to account
for changes in relaxation and susceptibility, and the cost of
installation, which may be higher at 3 T [Frayne et al.,
2003]. At higher field, there are also safety issues due to
the higher radio-frequency specific absorption rate (SAR),
especially for RF-intensive sequences, but 3D T1-weighted
sequences such as MP-RAGE have relatively low power
deposition and are not limited by SAR considerations at 3
T. When the ADNI MRI protocol was designed, some of
the increased SNR at 3 T was traded off for reductions in
chemical shift and susceptibility artifacts by increasing the
read-out bandwidth at 3 T versus 1.5 T. Conversely, 3 T
MRI offers many benefits (i.e., increased SNR) for func-
tional imaging, diffusion studies, and white matter lesion
detection [Di Perri et al., 2009].

Although this study examined morphometric features
measurable at 1.5 and 3 T, very high field strength studies
may reveal still finer-scale features not observable at lower
field, including hippocampal subfields that may be rele-
vant to tracking AD or MCI (see Augustinack et al., 2005,
for detection of entorhinal layer II with 7 T MRI). Van
Leemput [2009] used 3 T scans with a 0.38 mm in-plane
resolution to segment hippocampal subfields, and Mueller
and Weiner [2009] used 4 T scanning to assess effects of
age and genotype on hippocampal subfields. The
increased contrast at higher field is likely to assist future
morphometric studies, especially when scans are collected
with more RF receiver channels and parallel imaging to
reduce scan time, which in turn reduces potential motion
artifact. Although the 3 T acquisition in the ADNI protocol
developed in 2004 was over a minute longer than at 1.5 T,
with today’s technology the 3 T acquisitions are typically
2–3 min shorter.

One of the more surprising outcomes of this study was
that mixing data from different field strength scanners did
not cause a drastic loss of power compared to acquiring
data at a single field strength. This implies that field
strength induces relatively little bias and/or variation
compared to other sources such as variations between sub-
jects and between MRI sites. It needs to be seen, however,
if this still holds for MRI scans with more than two serial
observations per subject. Whether scanners can be mixed
depends on the quality control procedures (including
phantom-based calibration scans), the tendency for each
participating site to allow drifts in spatial calibration over
time, and the adequacy of subsequent image corrections.
Sample size estimates may also be lower for a study con-
ducted at a single site. In a recent study evaluating the
impact of image acquisition variables, combining data
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across platforms (i.e., vendors) and across field-strength
caused small volume difference biases, depending on the
brain structure and MRI vendor/field strength combina-
tion [Jovicich et al., 2006]. In a multisite study with differ-
ent field strengths and vendors, such as ADNI, these
confounds are important to evaluate. Even so, in this
multi-site study (which performed 3 T scanning at 31 dif-
ferent locations), mixing 3 and 1.5 T scans did not greatly
reduce power.

In summary, both 1.5 and 3 T MRI required a dramati-
cally smaller sample size to detect changes in AD and
MCI groups when compared to the sample sizes needed
for the standard functional measures, ADAS-Cog, MMSE, or
CDR-SB. Different MRI field strengths did not affect the
power to detect 25% slowing of atrophy (with 80% power)
and mixing 1.5 and 3 T scans did not greatly reduce power
and is likely to be acceptable for future clinical studies.
Currently, most MRI studies are conducted at 1.5 T; how-
ever, with more studies using higher field strength scanners,
the next generation of 3 T scanners may become the gold
standard for research and clinical studies.
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